
Ncnn-YOLOv3 Acceleration and Implementation
XU Shenghao

Chinese University of Hong
Kong

runzexu@link.cuhk.edu.hk

ABSTRACT
This project designs and implements the porting of YOLOv3
to mobile and uses YOLOv3 for object detection. During
the migration, NCNN, which is the high-performance neural
network inference computing framework, is used to quantify
and reduce the size of the YOLOv3 model, ultimately enabling
acceleration without compromising detection accuracy on the
mobile side.

INTRODUCTION
YOLOv3 is an object detection model, based on the Darknet
framework. In order to deploy YOLOv3 on mobile, we need to
convert YOLOv3 into a portable model by using a framework
such as NCNN. However, in the process of porting the model
to mobile, there may be will encounter problems that the
model being too large to load or slowing down the processing
speed. So that we propose that in the YOLOv3 transformation
process, we will quantization the model to speed up and reduce
the size of the model. Finally, perform the objection detection
on the mobile side, and verify the results in the mobile app.
Figure 1 shows the flowchart of the proposed project.

Figure 1. Flowchart of the proposed project.

YOLOV3 AND TRAINING
In this section, YOLOv3 will be introduced and analyzed in
detail. After that, we will build and train our model based on
the YOLOv3 baseline and feature structure.

Introduction and comparison of YOLOv3
You only look once (YOLO) is a state-of-the-art, real-time
object detection model, based on the Darknet framework.
YOLOv3, as the state-of-art algorithm of the YOLO series, has
both preserved and improved the previous algorithms. Let’s
first analyze the features of the YOLOv3.

• Use Leaky Relu as the activation function.

• End-to-end training. Through one loss function to training.

• Adopt Batch normalization as the methods to regularization,
accelerated convergence and avoidance over-fitting.

• Multi-scale training.

Figure 2 shows the structure of YOLOv3 network based on
the model proposed in the [6].

DBL is the basic component of YOLOv3, As shown in
the lower-left corner of Figure 2, it combines with the
convolutional layer, batch normalization and the Leaky
Relu.For YOLOv3, batch normalization and Leaky Relu
are already minimal components that are connected to the
convolutional layer and cannot be subdivided (except for
the last layer of convolution), which together make up the
smallest component in the network.

Resn is another important basic component of YOLOv3, which
together with DBL builds the backbone of YOLOv3 namely
Darknent-53. Resn is the combination of zero padding and
DBL component and with several residual units (res unit). zero
padding and DBL perform the down-sampling in the Resn.
The n in the Resn represents the number, like res1, res2, it
indicates how many residual units are in the Resn.
The role of the concat is Tensor stitching, which stitches the
Darknet middle layer with the up-sampling of one of the later
layers. For example, the stitching with two Tensor 32∗32∗128
and 32∗32∗256. After the Tensor stitching, we will get the
Tensor with size 32∗32∗384.

The backbone of the YOLOv3 is the Darknet-53, as shown in
Figure 3 [6]. Inside the whole network structure, there is no
pooling layer or fully connected layer. During the forward
propagation, the dimensional transformation of the tensor is
achieved by changing the step size of the convolution kernel.
For example, if we adopt stride = (4,4), this is equivalent
to reducing the size of the image to 1/16 of the original
size. From Figure 3, we can see that the backbone shrinks
the output feature map to 1/32 of the input. Darknet-53
combines by several Resn components. And each Resn involve
(1+n∗1) convolutional layer. So, in figure 2 we can see that
there one conventional layer in DBL add with 5 Resn blocks
and one fully connected layer, where 1+(1+2∗1)+(1+2∗
2)+(1+2∗8)+(1+2∗8)+(1+2∗4) = 52+FC = 53Conv.

Therefore, the entire backbone network contains 53 convo-
lutional layers of Backbone. As can be seen from Table 1,
although YOLOv3 utilizes the Residual structure of ResNet
[1], it is not more efficient than ResNet-101 and ResNet-152.
However, compared with YOLOv2 [5], which does not adopt



Figure 2. Structure of YOLOv3 network

Figure 3. Darknet-53

the Residual structure, the network of v3 is more efficient.

When we look at the detection metric of the mean average
precision (mAP), which shown in Table 2, YOLOv3 performs
slightly worse than RetinaNet, but achieves higher precision
than the SSD variant. This result was also obtained for mAP
at intersection over unit(IoU) =0.5. Combine Table 1 and
Table 2, Darknet-19 perform best in speed. However, for
YOLOv3, it pursues performance on the basis of ensuring
real-time performance (FPS =78).

Backbone Top-1 Top-5 FPS

Darknet-19 [5] 74.1 91.8 171
ResNet-101 [1] 77.1 93.7 53
ResNet-152 [1] 77.6 93.8 37
Darknet-53 [6] 77.2 93.8 78

Table 1. Comparison between different Backbones.

One-stage methods Backbone AP AP50

YOLOv2 [5] Darknet-19 21.6 44.0
SSD513 [3] ResNet-101-SSD [1] 31.2 50.4
RetinaNet [2] ResNet-101-FPD 39.1 59.1
YOLOv3 [6] Darknet-53 33.0 57.9

Table 2. Comparison between different One-stage methods.

Training YOLOv3
In the last section, we introduce the structure of the YOLOv3
and compare it with other famous networks. After we have the
basic concept about the YOLOv3, then we can start building
our YOLOv3 model from the scratch.

Training data
For the data sets, we selected the PASCAL VOC 2007 and
PASCAL VOC 2012 data sets, with a total of 3,3043 images.
The training set contains the test and train set of the PASCAL
VOC 2007 add with the train and valuation set of PASCAL
VOC 2012. Only adopt PASCAL VOC 2007 test set for
valuation. However, Darknet requires that a label file be
generated for the image data set in txt format, the format
of the label file need contains five parameters, which are
‘object-class’, ‘x-coordinate’, ‘y-coordinate’, ‘width’, and
‘high’ of the images.

To generate these label files we need a python script. In the
Figure 5, we can see the python code which use to get the label
and coordinate of each image. After running the script for the
data sets, we can get the txt files used for training, which
contain the five parameters, which like the format shown in
the Figure 6.

Configuration file
After we finish the training data preparation, we modify the
configuration file to reflect our own situation. We configure
the voc.data and yolov3-voc.cfg separately, with the following
parameters:



Figure 4. Training process of the YOLOv3

Figure 5. python script to generate parameter of images

Figure 6. parameter of images contain in the generated txt files

• Classes=20

• batch =64

• subdivision=16

• learning rate=0.001

• max batches=100000

Then, Due to YOLOv3 is base on the backbone of Darknet-53.
So, we download the pre-trained weight file of the Darknet-53,
then we use the above configure file to staring our training.

After training
As the training of the YOLOv3 processing, after 100000 it-
erations, we will get the weight file of the YOLOv3, namely
yolov3.weight.

YOLOV3 QUANTIZATION
In this section, this report will first introduce our motivation
to quantify YOLOv3, and then we will try to use different
popular opensource tools to get the quantified YOLOv3 model.
Finally, we will give some analysis of different quantization
tools.

Figure 7. Dataflow of model convert

Motivation
After completing the training of YOLOv3(darknet), we got
the weight file of YOLOv3. However, the YOLOv3 is too
large to be loaded during the Android deployment process,
especially in some outdated devices. In order to solve this
problem, the general idea is quantization. Quantization can
accelerate forward speed of the model by converting floating
point computations in the original model into int8 computa-
tions. At the same time, it compresses the original model, that
is, quantize the float32 weights into int8 weights.

Model Convert
For the purpose of comparing the effect of quantized YOLOv3
in various lightweight mobile network frameworks, we need to
convert YOLOv3.weight into an onnx model, which is a kind
of popular Cross-frame model intermediate expression frame-
work. As shown in the figure, YOLOv3.weight is converted to
YOLOv3.onnx through the weight-to-onnx.py code. Then we
need to compile MNN[7], NCNN[4] and TNN[8] respectively.
For MNN, we can convert YOLOv3.onnx to YOLOv3.mnn
with the usage of MNNConvert tool; for NCNN, we have
the ability to get YOLOv3.bin and YOLOv3.param through
its onnx2ncnn executable file; for TNN, YOLOv3.tnn can be
successfully converted by the convert2tnn tool.



Figure 8. Quantization tools

Model Origin(MB) Quantized(MB)

YOLOv3.mnn 247.6 63.4
YOLOv3.bin(ncnn) 247.3 63.0

Table 3. Model size comparison

Actually, we have tried three different quantization tools in
NCNN, MNN and TNN in this project. By compiling the
above three kinds of lightweight networks, we are able to get
the relative executable file, that is, quantize.out, ncnn2int8 and
converter.py respectively.

Quantization Process and Results
Figure 9 illustrates the process of quantifying the model with
mnn and ncnn respectively. Table 3 shows the comparison of
model sizes before and after quantification.

With regard to MNN quantization. At the first stage, we should
build MNN with specified parameter to compile quantization
tools. The second step is to write the config file with the
parameters you preferred. Finally, we run quantize.out to
quantize the model. The NCNN quantization is similar with
MNN. It can be divided into three steps, optimize graphic,
create calibration file and do quantization

Quantitative Analysis
All experiments in this project are performed on a macbook
pro 2018 with Intel Core i7-8750H and 16GB memory.

MNN
We used the following command to analyze the model before
and after quantification.

./pictureRecognition.out yolov3-quan.mnn ./images/test.jpg

./pictureRecognition.out yolov3.mnn ./images/test.jpg

As shown in table 3. Inference time is tested using MNN
official Test Tool. All MAP results are evaluated using the
first 100 testing images in order to save time. The model is
quantized using official MNN tool. The poor inference speed
is due to arm-specified optimization.We do not have the ability
to test multithreading due to the poor support of OMP in Mac
OS. Consequently, we abandon the use of MNN’s quantitative
model because its inference time is too long to run on the x86
instruction set simulator on Mac.

Model InputSize Thread InferenceTime mAP

YOLOv3 416 1 100.4 0.721
YOLOv3-quan 416 1 1475.2 0.700

Table 4. MNN Quantization Comparison.

Figure 9. Quantization process of MNN and NCNN

Model InputSize Thread InferenceTime mAP

YOLOv3 416 1 138.2 0.717
YOLOv3-quan 416 1 148.9 0.714

Table 5. NCNN Quantization Comparison.

NCNN
By modifying the sample code provided by NCNN, we can
compile a yolov3 executable file, the input parameters of
which are bin, param file and a picture to be recognized. We
tested the YOLOv3 model before and after quantification, and
the data is shown in Table 5. The inference time is the output
log of yolov3 executable file. Other meanings of the columns
in Table 5 are the same as in Table 4.

IMPLEMENTATION ON ANDROID
This part is mainly to port ncnn to Android platform, which
will be divided into the following parts: use of Android NDK,
deployment of related files, core code and implementation,
demo results.

Use of Android NDK
In order to port YOLOv3 to an Android application, some
preparations need to be made first.

The method of compiling the .so file is using camke. So, it is
equivalent to select "Include C++ Support" when creating a
new Android project. The purpose of doing so is to using Java
interface to call C++, namely using NDK technology. In the
Figure 7, the NDK layer is called by JNI on the top of the app.

Android development uses the NDK to compile C and C++
code into native libraries, which are then subsumed into the
APK using Android Studio’s integrated build system, Gradle.

Java code can access the functionality in the native libraries
through the Java Native Interface (JNI) framework. JNI is a
feature of Java that calls native languages and is not directly
related to Android.



Figure 10. Relationship Between JNI and NDK

Figure 11. NDK Layer in Android Application

The process of developing with JNI is to first declare Native
methods in Java, then compile the above Java source file javac
and export JNI header files. Implement the Native methods of
Java in C++. Finally, compile the .so library file.

About the relationship between JNI and NDK, it is shown in
the Figure 8.

Deployment of Related Files
In this part, the files generated in the quantification phase need
to be configured into the Android project. Specifically, these
files are included below and shwon in the Figure 9.

• include/

• libncnn.a

• Model Files

• yolov3.id.h

The ncnn build-Android compilation generates two folders,
include and lib. The include folder contains frequently used
header files, while the lib folder contains the libncnn.a file,
which can be interpreted as packaging ncnn into a form that
can be imported into Android Platform.

Figure 12. Related Files

In the model files, yolov3-int8.bin is the converted network
weight and yolov3.param.bin is the converted network model
parameter. And label.txt is the label file for detecting objects.

yolov3.id.h is a compiled file that is encrypted by ncnn.

The preparation completed once all these files have been de-
ployed in their respective locations of the Android project.

Core Code And Implementation
This part is mainly the core code and concrete implementation
part of Android project.

First is the layout file of this Android Application, which can
be seen in the Figure. This application is mainly a demo of
selecting a picture and detecting it, with a button for selecting
and a button for detecting. The top half of the application
interface shows the selected picture, and the bottom half shows
the information about the detected objects in the picture after
detection, the accuracy, the detection speed and other detection
information.

Next, create a new YOLOV 3. java file in the Java folder. This
Java class is used to load the lib file and also defines the
following two methods:



Figure 13. Layout File

• public native boolean Init(byte[] param, byte[] bin);

• public native float[] Detect(Bitmap bitmap);

The Init() function for initialization and the Detect() function
is used for detection.

In the MainActivity.java file, the initialization of the
YOLOV3 class is first implemented. It instantiate the two inter-
faces, namely Init() and Detect(), and later call the C++ func-
tion by JNI. Also need to implement the initialization function
initNCNNYOLOV3(). This function loads yolov3.param.bin
and yolov3.bin,and then pass the files into Java’s NDK inter-
face. Finally, there is init view() function that needs to be
implemented. This function is for detecting images and draw-
ing rectangular boxes, which calls two functions for loading
labels and outputting information about detection.

In order to use NDK, a new YOLO3-jni.cpp file is also
needed. Modify this file to implement two function calls of
the Java class YOLOv3 via NDK, which correspond to Init()
and Detect() in Java, respectively.

• JNIEXPORT jfloatArray JNICALL com-example-DNN-
ncnnyolo-yolo-Init(JNIEnv *env, jobject obj, jbyteArray
param, jbyteArray bin)

• JNIEXPORT jfloatArray JNICALL com-example-DNN-
ncnnyolo-yolo-Detect(JNIEnv* env, jobject thiz, jobject
bitmap)

After completing the above core code, we still need to make
some changes to the following configuration files.

• CMakeList.txt

• build.gradle

• AndroidManifest.xml

The modification of the above configuration file mainly refers
to sample in the NCNN open source library for configuration.

So far, the implementation part of this Android application
has been basically completed, and the following is the demo
result of this demo.

Demo Result
Run the program in Android Virtual Device(AVD) and we can
get a demo to detect pictures which is shown in Figure.

Figure 14. Android Demo

For the recognition of individual objects, which is shown in
the Figure, the demo performs very well. After our tests, the
detection of individual objects is fast and highly accurate.

Figure 15. Single object detection

This demo also supports the detection of multiple objects, as
seen in the figure. After our tests, when performing multi-
object detection, the detection speed of certain objects will
be slower in some more complex scenes, but it does not have
much impact on the overall speed and accuracy.

CONCLUSION
We presented a flow of training, quantization and deployment
of YOLOv3 in this project. Initially, we trained YOLOv3.
Then we quantized the model using MNN, NCNN and TNN
respectively. We got the quantized model successfully in MNN
and NCNN while TNN has problems with model conversion.
After experiments, we decided to choose NCNN model to
deploy on android platform because the MNN model has poor
inference time. Finally, we ran the quantized YOLOv3 net-
work successfully in the mobile app and successfully detected



Figure 16. Multi-object detection

single or multiple targets with guaranteed detection speed and
accuracy.

REFERENCES
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. 2015. Deep Residual Learning for Image
Recognition. CoRR abs/1512.03385 (2015).
http://arxiv.org/abs/1512.03385

[2] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming
He, and Piotr Dollár. 2017. Focal Loss for Dense Object

Detection. CoRR abs/1708.02002 (2017).
http://arxiv.org/abs/1708.02002

[3] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott E. Reed, Cheng-Yang Fu, and
Alexander C. Berg. 2015. SSD: Single Shot MultiBox
Detector. CoRR abs/1512.02325 (2015).
http://arxiv.org/abs/1512.02325

[4] Zuo Zhang Nihui. 2019. Tencent: NCNN: a
high-performance neural network inference computing
framework optimized for mobile platforms. [EB/OL].
(2019). https://github.com/Tencent/ncnn.

[5] J. Redmon and A. Farhadi. 2017. YOLO9000: Better,
Faster, Stronger. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 6517–6525.
DOI:http://dx.doi.org/10.1109/CVPR.2017.690

[6] Joseph Redmon and Ali Farhadi. 2018. YOLOv3: An
Incremental Improvement. arXiv (2018).

[7] MNN Team. 2019a. Alibaba: MNN: a lightweight deep
neural network inference engine. [EB/OL]. (2019).
https://github.com/alibaba/MNN.

[8] TNN Team. 2019b. Tencent: TNN: a high-performance
and lightweight inference framework for mobile devices.
[EB/OL]. (2019). https://github.com/Tencent/TNN.

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1708.02002
http://arxiv.org/abs/1512.02325
https://github.com/Tencent/ncnn
http://dx.doi.org/10.1109/CVPR.2017.690
https://github.com/alibaba/MNN
https://github.com/Tencent/TNN

	Introduction
	YOLOv3 and Training 
	Introduction and comparison of YOLOv3
	Training YOLOv3
	Training data
	Configuration file 
	After training


	YOLOv3 QUANTIZATION
	Motivation
	Model Convert
	Quantization Process and Results
	Quantitative Analysis
	MNN
	NCNN


	Implementation on Android
	Use of Android NDK
	Deployment of Related Files
	Core Code And Implementation
	Demo Result

	CONCLUSION
	References 

