
CMSC 5724 Project

Decision Tree

Nov.2020

Contents

1 Introduction 3

1.1 Hunt’s Algorithm and Hunt’s Algorithm(modified) 3

2 Build of Decision Tree 5

2.1 Data Prepossessing . 5

2.2 Model training and validation . 6

2.2.1 Class Diagram . 6

2.2.2 Methods for Expressing Test Conditions 7

2.2.3 Enhanced Performance . 7

2

Chapter 1

Introduction

1.1 Hunt’s Algorithm and Hunt’s Algorithm(modified)

The Classification problem is a universal problem and it is also the basis of other more

complex decision-making problems. The essence of the classification problem is that when

a data set is given, we are required to train a model that can predict an object with a set

of new feature factors that should belong to which category.

There are a lot of algorithms we can use to solve this problem in machine learning and

data mining and we have learned many algorithms in the class such as SVM,K-means,

Naive Bayes, etc. In this project, we use Decision Tree Classifier to predict the income

of the adult in America. Decision Tree Classifier is a simple and widely used classification

technique. It applies a very useful way to make a decision. When we have built a decision

tree model, we can test the objects from the root node to the leaf node and get the final

classification result.

In general, because of the exponential size of the search space, it’s computationally

infeasible to find the optimal tree. Therefore, some algorithms use local optimal strategies

to build a decision tree such as CART , ID3, C4.5. In this project, we choose Hunt’s

algorithm , which is discussed in the class.

In Hunt’s algorithm, a decision tree is built recursively by dividing the training set

into purer subsets. There are two recursive procedures in Hunt’s algorithm, the first one

is if all the objects in the training set have the same label, we can get a leaf node with

the value of this label. the other one is if all the objects in the training set have the value

of the same attribute, it’s impossible to divide these objects, so we can get a leaf node

3

whose label is the majority one in the training set. However, if the training set contains

objects that belong to more than one label, we need to split the data into smaller subsets.

There are countless choices to split the data, we need to get a better purity of the node so

that we can have a better split way to get class distribution. The measurements of node

purity are Gini index,Entropy, Information gate. we choose to use the Gini index

in our project because this measurement is taught in the class and all of us are familiar

with Gini. The smaller Gini is, the better the split quality. In this way, we can finally

build a decision tree.

However, because of the Generalization Theorem, if we go deeper and make the

subset too small, the subtree will become unreliable and overfitting will occur. To avoid

this situation, we set a parameter called ‘small factor’ which can show how small the

subset is, and by comparing the accuracy of the model, we can split the data-set more

appropriately. This is the modified version of Hunt’s algorithm .

4

Chapter 2

Build of Decision Tree

Our project is divided into two main parts:

1. Data Prepossessing

2. Model training and validation

2.1 Data Prepossessing

The data set has a total of 13 attributes and includes a label (14th-index).

First of all, we create a function called clean data().f.readlines() is used to read the

data in the data set line by line.Also, data=[] and temp[] are created for storing value

in each lines.

We enter the training set and the test set into clean data(). Then we use line.strip()

to eliminate spaces at the beginning and end. After that,slicing strings by specifying

delimiters(’, ’).

In our project,for-loop is used to iterate through each split. Due to we need remove

the attribute “native-country”,and “native-country” is the second last index of each line

of value.When iterating to len(value)-2 (“native-country”), we skip this attribute and

do not record it in the temp[].The above method successfully removes the attribute

”native-country”.

As shown in Figure 1.1 belowWe change the labels <= 50k and > 50k to 0 and 1

respectively.Since the data format of the training set and the test set are different, we

traverse both sides to filter the data.

5

Figure 2.1: label

In the dataset, there are the following kinds of ordinal attributes: age,fnlwgt,education -

num,capital gain,capital loss,hours per week. Total 6 continuous attributes. So, we

convert those attributes into int format and append in to temp[].

In the last,we remove all the records containing ‘?’ (i.e., missing values).We use the

if conditional to traverse the data in temp[], if there exist ‘?’ in the data which store

in the temp[], we will skip this line of data and append rest data into data=[].

In the end, the data=[] contains all valid data after cleaning. Then, the function

clean data() will return the valid data. To sum up, we have completed the data cleaning

work and obtained the required valid data.

There are 32,562 lines of data in the test set and 16,283 lines of data in the training

set (including empty lines and comment lines), and after passing our cleaning process, the

training set contains 30,718 lines of data and the test set contains 15,315 lines of data.

2.2 Model training and validation

2.2.1 Class Diagram

In this part, we will use the class diagram ,shown in Figure 2.2, to describe the classes

contained in the system and the relationship between them.

Firstly, we instantiate the class, as we all know, a class represent a concept which

encapsulates state (attributes) and behavior(operations), so you can see the attributes

6

Figure 2.2: class diagram

of the node class are shown in the second partition and the operations appear in the third

partition and operations map onto class methods in code.

In the node class, we package leftnode and rightnode which can help to initialize the

decision tree. In the DecisionTree class, we can use the Gini index which we calculate

by the subsets of data to train the tree and return with the error.

2.2.2 Methods for Expressing Test Conditions

The methods we choose for expressing test conditions depend on attribute types and the

number of ways to split.

In the original dataset, there are two different kinds of attribute types, such as

continuous and discrete. And we use a 2 − way split to divide values into two sub-

sets. Therefore, as for continuous attributes, we convert the string type to integer and

consider all possible splits and find the best cut, for example, like (A ≥ V or A < V). As

for discrete attributes, we divide all values into two-part(one meets the conditions while

the other not), in this way, we can also find the best split.

2.2.3 Enhanced Performance

In order to get a better performance or increase the accuracy, we promote a function

called small factor

As know from the Generalization Theorem, generalizationerror of classifier h is

7

Figure 2.3: error rate compare with the parameters

the sum of empiricalerror of h and
√

ln(1
δ
)+ln|H|
2|S| . we observe two summands, they are

monotonically decreasing and monotonically increasing in H, respectively.However, these

two summands do not contribute the same proportion to the generalizationerror. In an-

other word, if I adjust the small factor, it is possible that result grew in
√

ln(1
δ
)+ln|H|
2|S| com-

pared to the previous adoption variables.But, it also result the decrease in empiricalerror,it

may result in a situation where the reduction in error rate caused by changing small fac-

tor is greater than the increase in error rate caused by changing small factor.the sum

of this two factors may further reduce the value of generalization error. So, this is kind

of trad-off between empiricalerror and
√

ln(1
δ
)+ln|H|
2|S| . And, we want to find the balance

between two factor.

In the class DecisionTree node, we package an attribute called small factor which

shows the size of the subsets. As we know, if we split the training set into a very small

subset, it will overfit, so we test the decision tree by adjusting this parameter. And we

can see when we set the small factor as 800, we can avoid the over-fitting.The experiment

result is shown in Figure 2.3.

8

